Quantum gravity computers: On the theory of computation with indefinite causal structure
نویسنده
چکیده
A quantum gravity computer is one for which the particular effects of quantum gravity are relevant. In general relativity, causal structure is non-fixed. In quantum theory non-fixed quantities are subject to quantum uncertainty. It is therefore likely that, in a theory of quantum gravity, we will have indefinite causal structure. This means that there will be no matter of fact as to whether a particular interval is timelike or not. We study the implications of this for the theory of computation. Classical and quantum computations consist in evolving the state of the computer through a sequence of time steps. This will, most likely, not be possible for a quantum gravity computer because the notion of a time step makes no sense if we have indefinite causal structure. We show that it is possible to set up a model for computation even in the absence of definite causal structure by using a certain framework (the causaloid formalism) that was developed for the purpose of correlating data taken in this type of situation. Corresponding to a physical theory is a causaloid, Λ (this is a mathematical object containing information about the causal connections between different spacetime regions). A computer is given by the pair {Λ, S} where S is a set of gates. Working within the causaloid formalism, we explore the question of whether universal quantum gravity computers are possible. We also examine whether a quantum gravity computer might be more powerful than a quantum (or classical) computer. In particular, we ask whether indefinite causal structure can be used as a computational resource.
منابع مشابه
Formalism Locality in Quantum Theory and Quantum Gravity
We expect a theory of Quantum Gravity to be both probabilistic and have indefinite causal structure. Indefinite causal structure poses particular problems for theory formulation since many of the core ideas used in the usual approaches to theory construction depend on having definite causal structure. For example, the notion of a state across space evolving in time requires that we have some de...
متن کاملInformation Processing Structure of Quantum Gravity
The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. The space of quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. In this work, we provide ...
متن کاملQuantum Gravity from Quantum Computation
A theory of quantum gravity based on quantum computation is proposed. In this theory, fundamental processes are described in terms of quantum information processing: the geometry of space-time is a construct, derived from the underlying quantum computation. Explicit mechanisms are provided for the back-reaction of the metric to computational 'matter,' black-hole evaporation, holography, and qua...
متن کاملComputational Computation of the Efferene Structure on the Para phenylene diamine
In this study, the effect of fullerene electron mobility on the composition of paraphenylenediamine and stability was studied. Using quantum chemistry calculations, the first combination of paraffenylenediamine in a single-full-time region connected with fullerene through carbon atoms was reported. Experimental research was simulated and optimized using GIS software. Then the NBO calculations w...
متن کاملQuantum Causal Histories and the Directed Graph Operator Framework
A mathematical formalism called Quantum Causal Histories was recently invented as an attempt to describe causality within a quantum theory of gravity. Fundamental examples include quantum computers. We show there is a connection between this formalism and the directed graph operator framework from the theory of operator algebras.
متن کامل